
MATLAB® Production Server™
Java® Programming Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Production Server™ Java® Programming Guide
© COPYRIGHT 2012–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2014 Online only New for Version 1.2 (Release R2014a)
October 2014 Online only Revised for Version 2.0 (Release R2014b)
March 2015 Online only Revised for Version 2.1 (Release R2015a)
September 2015 Online only Revised for Version 2.2 (Release R2015b)
March 2016 Online only Revised for Version 2.3 (Release 2016a)
September 2016 Online only Revised for Version 2.4 (Release 2016b)
March 2017 Online only Revised for Version 3.0 (Release 2017a)
September 2017 Online only Revised for Version 3.0.1 (Release R2017b)
March 2018 Online only Revised for Version 3.1 (Release R2018a)
September 2018 Online only Revised for Version 4.0 (Release R2018b)
March 2019 Online only Revised for Version 4.1 (Release R2019a)
September 2019 Online only Revised for Version 4.2 (Release R2019b)
March 2020 Online only Revised for Version 4.3 (Release R2020a)
September 2020 Online only Revised for Version 4.4 (Release R2020b)
March 2021 Online only Revised for Version 4.5 (Release R2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Client Programming
1

Create a Java MATLAB Production Server Client Using the MWHttpClient
Class . 1-2

Create a Java Client Using the MWHttpClient Class 1-3

Unsupported MATLAB Data Types for Client and Server Marshaling 1-6
Supported Data Types . 1-6
Unsupported Data Types . 1-6

Java Client Programming
2

Java Client Coding Best Practices . 2-2
Static Proxy Interface Guidelines . 2-2
Java Client Prerequisites . 2-2
Manage Client Lifecycle . 2-2
Handling Java Client Exceptions . 2-3
Managing System Resources . 2-3
Where to Find the Javadoc . 2-4

Configure Client-Server Connection . 2-5
Default Configuration . 2-5
Implement Custom Connection Configurations . 2-5

Invoke MATLAB Functions Dynamically . 2-8
Create a Proxy for Dynamic Invocation . 2-8
Invoke a MATLAB Function Dynamically . 2-8
Marshal MATLAB Structures . 2-10

Bond Pricing Tool for Java Client . 2-12
Objectives . 2-12
Step 1: Write MATLAB Code . 2-12
Step 2: Create a Deployable Archive with the Production Server Compiler

App . 2-12
Step 3: Share the Deployable Archive on a Server 2-13
Step 4: Create the Java Client Code . 2-13
Step 5: Build the Client Code and Run the Example 2-15

Code Multiple Outputs for Java Client . 2-16

Code Variable-Length Inputs and Outputs for Java Client 2-17

iii

Contents

Marshal MATLAB Structures (Structs) in Java . 2-18
Marshaling a Struct Between Client and Server 2-18

Data Conversion with Java and MATLAB Types . 2-24
Working with MATLAB Data Types . 2-24
Scalar Numeric Type Coercion . 2-25
Dimensionality in Java and MATLAB Data Types 2-25
Empty (Zero) Dimensions . 2-27
Boxed Types . 2-28
Signed and Unsigned Types in Java and MATLAB Data Types 2-28

Java Client Logging . 2-29
Use the Embedded log4j Engine . 2-29
Use an Existing Logging Engine . 2-30

Asynchronous RESTful Requests Using Protocol Buffers in the Java Client
. 2-31

Deploy your MATLAB Function on the Server . 2-31
Make an Asynchronous Request to the Server . 2-32
Get the State Information of the Request . 2-32
View the Collection of Requests Owned by a Particular Client 2-33
Retrieve the Results of a Request . 2-33

Synchronous RESTful Requests Using Protocol Buffers in the Java Client
. 2-37

Deploy your MATLAB Function on the Server . 2-37
Make a Synchronous Request to the Server . 2-38
Receive and Interpret the Server Response . 2-38

Struct Support for RESTful Requests Using Protocol Buffers in the Java
Client . 2-41

Deploy your MATLAB function on the server . 2-41
Create helper classes . 2-42
Make a synchronous request to the server . 2-42
Receive and interpret the server response . 2-43

Security
3

Execute MATLAB Functions Using HTTPS . 3-2
Configure Client Environment for SSL . 3-2
Establish Secure Proxy Connection . 3-3
Establish Secure Connection Using Client Authentication 3-3
Handle Exceptions . 3-4

Customize Security Configuration . 3-8
Specify Enabled Encryption Protocols . 3-8
Override Default Hostname Verification . 3-9
Use Additional Server Authentication . 3-10

iv Contents

Data Conversion Rules
A

Conversion of Java Types to MATLAB Types . A-2

Conversion of MATLAB Types to Java Types . A-3

v

Client Programming

• “Create a Java MATLAB Production Server Client Using the MWHttpClient Class” on page 1-2
• “Create a Java Client Using the MWHttpClient Class” on page 1-3
• “Unsupported MATLAB Data Types for Client and Server Marshaling” on page 1-6

1

Create a Java MATLAB Production Server Client Using the
MWHttpClient Class

To create a MATLAB Production Server client in Java:

1 Obtain mps_client.jar from $MPS_INSTALL/client.
2 Configure your development environment to use mps_client.jar.
3 Based on your requirements, decide if the client uses a static proxy or a dynamic proxy.

• A static proxy uses an object implementing an interface that mirrors the deployed MATLAB
functions. You provide the interface for the static proxy.

See “Static Proxy Interface Guidelines” on page 2-2.
• A dynamic proxy creates server requests based on the MATLAB function name provided to the

invoke() method. You provide the function name, the number of output arguments, and all
of the input arguments required to evaluate the functions.

See “Invoke MATLAB Functions Dynamically” on page 2-8.
4 Write Java code to instantiate a proxy to a MATLAB Production Server instance and call the

MATLAB functions.

a Create an MWClient object for communicating with the service hosted by a MATLAB
Production Server instance.

b Create MATLAB data structures to hold the data passed between the client and server.
c Invoke MATLAB functions.
d Free system resources using the close method of the MWClient object.

1 Client Programming

1-2

Create a Java Client Using the MWHttpClient Class
This example shows how to write a MATLAB Production Server client using the Java client API. In
your Java code, you will:

• Define a Java interface that represents the MATLAB function.
• Instantiate a proxy object to communicate with the server.
• Call the deployed function in your Java code.

To create a Java MATLAB Production Server client application:

1 Create a new file called MPSClientExample.java.
2 Using a text editor, open MPSClientExample.java.
3 Add the following import statements to the file:

import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

4 Add a Java interface that represents the deployed MATLAB function.

The interface for the addmatrix function

function a = addmatrix(a1, a2)

a = a1 + a2;

looks like this:

interface MATLABAddMatrix {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

When creating the interface, note the following:

• You can give the interface any valid Java name.
• You must give the method defined by this interface the same name as the deployed MATLAB

function.
• The Java method must support the same inputs and outputs supported by the MATLAB

function, in both type and number. For more information about data type conversions and how
to handle more complex MATLAB function signatures, see “Java Client Programming”.

• The Java method must handle MATLAB exceptions and I/O exceptions.
5 Add the following class definition:

public class MPSClientExample
{
}

This class now has a single main method that calls the generated class.
6 Add the main() method to the application.

 Create a Java Client Using the MWHttpClient Class

1-3

public static void main(String[] args)
{
}

7 Add the following code to the top of the main() method:

double[][] a1={{1,2,3},{3,2,1}};
double[][] a2={{4,5,6},{6,5,4}};

These statements initialize the variables used by the application.
8 Instantiate a client object using the MWHttpClient constructor.

MWClient client = new MWHttpClient();

This class establishes an HTTP connection between the application and the server instance.
9 Call the client object’s createProxy method to create a dynamic proxy.

You must specify the URL of the deployable archive and the name of your interface class as
arguments:

MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);

The URL value ("http://localhost:9910/addmatrix") used to create the proxy contains
three parts:

• the server address (localhost).
• the port number (9910).
• the archive name (addmatrix)

For more information about the createProxy method, see the Javadoc included in the
$MPS_INSTALL/client folder, where $MPS_INSTALL is the name of your MATLAB Production
Server installation folder.

10 Call the deployed MATLAB function in your Java application by calling the public method of the
interface.

 double[][] result = m.addmatrix(a1,a2);
11 Call the client object’s close() method to free system resources.

client.close();
12 Save the Java file.

The completed Java file should resemble the following:
import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix
 {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

public class MPSClientExample {

 public static void main(String[] args){

 double[][] a1={{1,2,3},{3,2,1}};
 double[][] a2={{4,5,6},{6,5,4}};

 MWClient client = new MWHttpClient();

1 Client Programming

1-4

 try{
 MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);
 double[][] result = m.addmatrix(a1,a2);

 // Print the resulting matrix
 printResult(result);

 }catch(MATLABException ex){

 // This exception represents errors in MATLAB
 System.out.println(ex);
 }catch(IOException ex){

 // This exception represents network issues.
 System.out.println(ex);
 }finally{

 client.close();
 }
 }

 private static void printResult(double[][] result){
 for(double[] row : result){
 for(double element : row){
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }
}

13 Compile the Java application, using the javac command or use the build capability of your Java
IDE.

For example, enter the following:
javac -classpath "MPS_INSTALL_ROOT\client\java\mps_client.jar" MPSClientExample.java

14 Run the application using the java command or your IDE.

For example, enter the following:
java -classpath .;"MPS_INSTALL_ROOT\client\java\mps_client.jar" MPSClientExample

The application returns the following at the console:

5.0 7.0 9.0
9.0 7.0 5.0

See Also

More About
• “Bond Pricing Tool for Java Client” on page 2-12

 Create a Java Client Using the MWHttpClient Class

1-5

Unsupported MATLAB Data Types for Client and Server
Marshaling

Supported Data Types
MATLAB Production Server supports marshaling of the following MATLAB data types between client
applications and server instances.

• Numeric types – Integers and floating-point numbers
• Character arrays
• Structures
• Cell arrays
• Logical

Unsupported Data Types
Following are just a few examples MATLAB data types that MATLAB Production Server does not
support for marshaling between the server and the client.

• MATLAB function handles
• Sparse matrices
• Tables
• Timetables
• Complex numbers

See Also

More About
• “JSON Representation of MATLAB Data Types”

1 Client Programming

1-6

Java Client Programming

• “Java Client Coding Best Practices” on page 2-2
• “Configure Client-Server Connection” on page 2-5
• “Invoke MATLAB Functions Dynamically” on page 2-8
• “Bond Pricing Tool for Java Client” on page 2-12
• “Code Multiple Outputs for Java Client” on page 2-16
• “Code Variable-Length Inputs and Outputs for Java Client” on page 2-17
• “Marshal MATLAB Structures (Structs) in Java” on page 2-18
• “Data Conversion with Java and MATLAB Types” on page 2-24
• “Java Client Logging” on page 2-29
• “Asynchronous RESTful Requests Using Protocol Buffers in the Java Client” on page 2-31
• “Synchronous RESTful Requests Using Protocol Buffers in the Java Client” on page 2-37
• “Struct Support for RESTful Requests Using Protocol Buffers in the Java Client” on page 2-41

2

Java Client Coding Best Practices
Static Proxy Interface Guidelines
When you write Java interfaces to invoke MATLAB code, remember these considerations:

• The method name exposed by the interface must match the name of the MATLAB function being
deployed.

• The method must have the same number of inputs and outputs as the MATLAB function.
• The method input and output types must be convertible to and from MATLAB.
• If you are working with MATLAB structures, remember that the field names are case sensitive and

must match in both the MATLAB function and corresponding user-defined Java type.
• The name of the interface can be any valid Java name.

Java Client Prerequisites
Complete the following steps to prepare your MATLAB Production Server Java development
environment.

1 Install a Java IDE of your choice. Follow instructions on the Oracle Web site for downloading
Java , if needed.

2 Add mps_client.jar (located in $MPS_INSTALL\client\java) to your Java CLASSPATH and
Build Path. This JAR file is sometimes defined in separate GUIs, depending on your IDE.

Generate one deployable archive into your server’s auto_deploy folder for each MATLAB
application you plan to deploy. For information about creating a deployable archive with the
Production Server Compiler app, see “Create Deployable Archive for MATLAB Production
Server”.

Your server’s main_config file should point to where your MATLAB Runtime instance is
installed.

3 The server hosting your deployable archive must be running.

Manage Client Lifecycle
A single Java client connects to one or more servers available at various URLs. Even though you
create multiple instances of MWHttpClient on page 1-2, one instance is capable of establishing
connections with multiple servers.

Proxy objects communicate with the server until the close method of that instance is invoked.

For a locally scoped instance of MWHttpClient, the Java client code looks like the following:

Locally Scoped Instance
MWClient client = new MWHttpClient();
try{
 // Code that uses client to communicate with the server
}finally{
 client.close();
}

2 Java Client Programming

2-2

https://www.oracle.com
https://www.oracle.com/us/technologies/java/index.html

When using a locally scoped instance of MWHttpClient, tie it to a servlet.

When using a servlet, initialize the MWHttpClient inside the HttpServlet.init() method, and
close it inside the HttpServlet.destroy() method, as in the following code:

Servlet Implementation

public class MPSServlet extends HttpServlet
{
 private final MWClient client;

 public void init(ServletConfig config) throws ServletException
 {
 client = new MWHttpClient();
 }

 protected void doGet(HttpServletRequest req,HttpServletResponse resp)
 throws ServletException,java.io.IOException
 {
 // Code that uses client to communicate with the server
 }

 public void destroy()
 {
 client.close();
 }
}

Handling Java Client Exceptions
The Java interface must declare checked exceptions for the following errors:

Java Client Exceptions

Exception Reason for Exception Additional Information
com.mathworks.mps.client
.MATLABException

A MATLAB error occurred when a
proxy object method was executed.

The exception provides the following:

• MATLAB Stack trace
• Error ID
• Error message

java.io.IOException • A network-related failure has
occurred.

• The server returns an HTTP error
of either 4xx or 5xx.

Use java.io.IOException to handle
an HTTP error of 4xx or 5xx in a
particular manner.

Managing System Resources
A single Java client connects to one or more servers available at different URLs. Instances of
MWHttpClient can communicate with multiple servers.

All proxy objects, created by an instance of MWHttpClient, communicate with the server until the
close method of MWHttpClient is invoked.

 Java Client Coding Best Practices

2-3

Call close only if you no longer need to communicate with the server and you are ready to release
the system resources. Closing the client terminates connections to all created proxies.

Where to Find the Javadoc
The API doc for the Java client is installed in $MPS_INSTALL/client.

2 Java Client Programming

2-4

Configure Client-Server Connection
The MWHttpClientConfig interface in the Java client API defines the default configuration that an
instance of MWHttpClient uses when it establishes a client-server connection. To modify the default
configuration, extend the MWHttpClientDefaultConfig class and override its methods.

Default Configuration
The default configuration consists of the following fields. The MWHttpClientDefaultConfig class
inherits these fields from the MWHttpClientConfig interface.

Field Name Description Default Value
DEFAULT_IS_COOKIE_ENABLE
D

Determines if the client sets the
HTTP cookie.

true

DEFAULT_IS_INTERRUPTABLE Determines if the client can
interrupt MATLAB function
execution.

false

DEFAULT_RESPONSE_SIZE_LI
MIT

Maximum size, in bytes, of the
response that a client accepts.

64*1024*1024 (64 MB)

DEFAULT_NUM_CONNECTIONS_
PER_ADDRESS

Maximum number of
connections that the client
opens to fulfill multiple
requests.

-1, specifies that the client can
uses as many connections as the
system allows.

DEFAULT_TIMEOUT_MS Amount of time, in milliseconds,
that the client waits for a server
response before timing out.

120000

Implement Custom Connection Configurations
To implement a custom client-server connection configuration, extend the
MWHttpClientDefaultConfig class, and override its methods to provide an implementation for
your custom configuration. The MWHttpClientDefaultConfig class has one getter method
corresponding to each configuration field that you can override.

Method Description
public boolean isCookieEnabled() Returns true if the client sets the HTTP cookie;

otherwise, returns false.
public boolean isInterruptible() Returns true if the client can interrupt the

execution of a deployed MATLAB function while
waiting for a response; otherwise, returns false.

public int getResponseSizeLimit() Returns the maximum number of bytes that the
client can accept in a server response.

public int getTimeoutMs() Returns the time in milliseconds that a client
waits for a response before generating an error.

 Configure Client-Server Connection

2-5

Method Description
public in
getMaxConnectionsPerAddress()

Returns the maximum number of connections
that a client can use to handle simultaneous
requests.

Note If isInterruptible() returns false, then getMaxConnectionsPerAddress() must
return -1.

To change one or more client-server connection properties:

1 Implement a custom connection configuration by extending the MWHttpClientDefaultConfig
class.

2 Create the client-server connection using the MWHttpClient constructor that accepts an
instance of MWHttpClientDefaultConfig.

You need to override only the getters for the properties that you want to change. For example, to
specify that a client times out after six seconds, can accept 4 MB responses, and does not save HTTP
cookies, override getTimeOutMs(), getResponseSizeLimit(), and isCookieEnabled(). The
sample code follows.

//Implement custom configuration
class MyClientConfig extends MWHttpClientDefaultConfig
{
 public long getTimeOutMs()
 {
 return 6000;
 }
 public int getResponseSizeLimit()
 {
 return 4*1024*1024;
 }
 public boolean isCookieEnabled()
 {
 return false;
 }
}
...
//Create client-server connection
MWClient client = new MWHttpClient(new MyClientConfig());
...

To modify the security configuration, provide an object that extends the MWSSLDefaultConfig
utility class as an argument to the MWHttpClient constructor.

...
MWHttpClient(MWHttpClientConfig config, MWSSLConfig sslConfig)
...

For more information, see “Customize Security Configuration” on page 3-8.

2 Java Client Programming

2-6

See Also

More About
• “Create a Java MATLAB Production Server Client Using the MWHttpClient Class” on page 1-2
• “Create a Java Client Using the MWHttpClient Class”
• “Customize Security Configuration” on page 3-8

 Configure Client-Server Connection

2-7

Invoke MATLAB Functions Dynamically
In this section...
“Create a Proxy for Dynamic Invocation” on page 2-8
“Invoke a MATLAB Function Dynamically” on page 2-8
“Marshal MATLAB Structures” on page 2-10

To dynamically invoke functions on an MATLAB Production Server instance, you use a reflection-
based proxy to construct the MATLAB function request. The function name and all of the inputs and
outputs are passed as parameters to the method invoking the request. This means that you do not
need to recompile your application every time you add a function to a deployed archive.

To dynamically invoke a MATLAB function:

1 Instantiate an instance of the MWHttpClient class.
2 Create a reflection-based proxy object using one of the createComponentProxy() methods of

the client connection.
3 Invoke the function using one of the invoke() methods of the reflection-based proxy.

Create a Proxy for Dynamic Invocation
A reflection-based proxy implements the MWInvokable interface and provides methods that enables
you to directly invoke any MATLAB function in a deployable archive. As with the interface-based
proxy, the reflection-based proxy is created from the client connection object. The MWHttpClient
class has two methods for creating a reflection-based proxy:

• MWInvokable createComponentProxy(URL archiveURL) creates a proxy that uses standard
MATLAB data types.

• MWInvokable createComponentProxy(URL archiveURL, MWMarshalingRules
marshalingRules) creates a proxy that uses structures.

To create a reflection-based proxy for invoking functions in the archive myMagic hosted on your local
computer:

MWClient myClient = new MWHttpClient();

URL archiveURL = new URL("http://localhost:9910/myMagic");
MWInvokable myProxy = myClient.createComponentProxy(archiveURL);

Invoke a MATLAB Function Dynamically
A reflection-based proxy has three methods for invoking functions on a server:

• Object[] invoke(final String functionName, final int nargout, final
Class<T> targetType, final Object... inputs) invokes a function that returns
nargout values.

• <T> T invoke(final String functionName, final Class<T> targetType, final
Object... inputs) invokes a functions that returns a single value.

• invokeVoid(final String functionName, final Object... inputs) invokes a
function that returns no values.

2 Java Client Programming

2-8

All methods map to the MATLAB function as follows:

• First argument is the function name
• Middle set of arguments, nargout and targetType, represent the return values of the function
• Last arguments are the function inputs

Return Multiple Outputs

The MATLAB function myLimits returns two values.

function [myMin,myMax] = myLimits(myRange)
 myMin = min(myRange);
 myMax = max(myRange);
end

To invoke myLimits from a Java client, use the invoke() method that takes the number of return
arguments:

double[] myRange = new double[]{2,5,7,100,0.5};
try
{
 Object[] myLimits = myProxy.invoke("myLimits",
 2,
 Object[].class,
 myRange);
 double myMin = ((Double) myLimits[0]).doubleValue();
 double myMax = ((Double) myLimits[1]).doubleValue();
 System.out.printf("min: %f max: %f",myMin,myMax);
}
catch (Throwable e)
{
 e.printStackTrace();
}

Because Java cannot determine the proper types for each of the returned values, this form of invoke
always returns Object[] and always takes Object[].class as the target type. You must cast the
returned values into the proper types.

Return a Single Output

The MATLAB function addmatrix returns a single value.

function a = addmatrix(a1, a2)
a = a1 + a2;

To invoke addmatrix from a Java client, use the invoke() method that does not take the number of
return arguments:

double[][] a1={{1,2,3},{3,2,1}};
double[][] a2={{4,5,6},{6,5,4}};
try
{
 Double[][] result = myProxy.invoke("addmatrix",
 Double[][].class,
 a1,
 a2);

 Invoke MATLAB Functions Dynamically

2-9

 for(Double[] row : result)
 {
 for(double element : row)
 {
 System.out.print(element + " ");
 }
 }
} catch (Throwable e)
{
 e.printStackTrace();
}

Return No Outputs

The MATLAB function foo does not return value.

function foo(a1)
min(a1);

To invoke foo from a Java client, use the invokeVoid() method:

double[][] a={{1,2,3},{3,2,1}};
try
{
 myProxy.invokeVoid("foo", (Object)a);
}
catch (Throwable e)
{
 e.printStackTrace();
}

Marshal MATLAB Structures
If any MATLAB function in a deployable archive uses structures, you need to provide marshaling rules
to the reflection-based proxy. To provide marshaling rules to the proxy:

1 Implement a new set of marshaling rules by extending the MWDefaultMarshalingRules
interface to use a list of the classes being marshaled.

2 Create the proxy using the createComponentProxy(URL archiveURL,
MWMarshalingRules marshalingRules) method.

The deployable archive studentChecker includes functions that use a MATLAB structure of the
form

S =
name: 'Ed Plum'
score: 83
grade: 'B+'

Java client code represents the MATLAB structure with a class named Student. To create a
marshaling rule for dynamically invoking the functions in studentChecker, create a class named
studentMarshaler.

class studentMarshaler extends MWDefaultMarshalingRules
{
 public List<Class> getStructTypes() {
 List structType = new ArrayList<Class>();

2 Java Client Programming

2-10

 structType.add(Student.class);
 return structType;
 }
}

Create the proxy for studentChecker by passing studentMarshaler to
createComponentProxy().

URL archiveURL = new URL("http://localhost:9910/studentCheck");
myProxy = myClient.createComponentProxy(archiveURL,
 new StudentMarshaler());

For more information about using MATLAB structures, see “Marshal MATLAB Structures (Structs) in
Java” on page 2-18.

 Invoke MATLAB Functions Dynamically

2-11

Bond Pricing Tool for Java Client
This example shows an application that calculates a bond price from a simple formula.

You run this example by entering the following known values into a simple graphical interface:

• Coupon payment — C
• Number of payments — N
• Interest rate — i
• Value of bond or option at maturity — M

The application calculates price (P) based on the following equation:

P = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N

Objectives
The Bond Pricing Tool demonstrates the following features of MATLAB Production Server:

• Deploying a simple MATLAB function with a fixed number of inputs and a single output
• Deploying a MATLAB function with a simple GUI front-end for data input
• Using dispose() to free system resources

Step 1: Write MATLAB Code
Implement the Bond Pricing Tool in MATLAB, by writing the following code. Name the code
pricecalc.m.

Sample code is available in MPS_INSTALL\client\java\examples\BondPricingTool\MATLAB.

function price = pricecalc(value_at_maturity, coupon_payment,...
 interest_rate, num_payments)

 C = coupon_payment;
 N = num_payments;
 i = interest_rate;
 M = value_at_maturity;

 price = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N;

end

Step 2: Create a Deployable Archive with the Production Server
Compiler App
To create the deployable archive for this example:

1 From MATLAB, select the Production Server Compiler App.
2 In the Application Type list, select Deployable Archive.
3 In the Exported Functions field, add pricecalc.m.

2 Java Client Programming

2-12

pricecalc.m is located in MPS_INSTALL\client\java\examples\BondPricingTool
\MATLAB.

4 Under Application Information, change pricecalc to BondTools.
5 Click Package.

The generated deployable archive, BondTools.ctf is located in the
for_redistribution_files_only of the project’s folder.

Step 3: Share the Deployable Archive on a Server
1 Download the MATLAB Runtime, if needed, at https://www.mathworks.com/products/compiler/

mcr. See “Supported MATLAB Runtime Versions” for more information.
2 Create a server using mps-new. See “Create Server Instance” for more information.
3 If you have not already done so, specify the location of the MATLAB Runtime to the server by

editing the server configuration file, main_config and specifying a path for --mcr-root. See
“Configure Server” for details.

4 “Start Server Instance” and “Verify Server Status”.
5 Copy the BondTools.ctf file to the auto_deploy folder on the server for hosting.

Step 4: Create the Java Client Code
Create a compatible client interface and define methods in Java to match MATLAB function
pricecalc.m, hosted by the server as BondTools.ctf, using the guidelines in this section.

Additional Java files are also included that are typical of a standalone application. You can find the
example files in MPS_INSTALL\client\java\examples\BondPricingTool\Java.

This Java code... Provides this functionality...
BondPricingTool.java Runs the calculator application. The variable values of

the pricing function are declared in this class.
BondTools.java Defines pricecalc method interface, which is later

used to connect to a server to invoke pricecalc.m
BondToolsFactory.java Factory that creates new instances of BondTools
BondToolsStub.java Java class that implements a dummy pricecalc Java

method. Creating a stub method is a technique that
allows for calculations and processing to be added to
the application at a later time.

BondToolsStubFactory.java Factory that returns new instances of BondToolsStub
RequestSpeedMeter.java Displays a GUI interface and accepts inputs using Java

Swing classes
ServerBondToolsFactory.java Factory that creates new instances of MWHttpClient

and creates a proxy that provides an implementation of
the BondTools interface and allows access to
pricecalc.m, hosted by the server

When developing your Java code, note the following essential tasks, described in the sections that
follow. For more information about clients coding basics and best practices, see “Java Client Coding
Best Practices” on page 2-2.

 Bond Pricing Tool for Java Client

2-13

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

This documentation references specific portions of the client code. You can find the complete Java
client code in MPS_INSTALL\client\java\examples\BondPricingTool\Java.

Declare Java Method Signatures Compatible with MATLAB Functions You Deploy

To use the MATLAB functions you defined in “Step 1: Write MATLAB Code” on page 2-12, declare the
corresponding Java method signature in the interface BondTools.java:

interface BondTools {
 double pricecalc (double faceValue,
 double couponYield,
 double interestRate,
 double numPayments)
 throws IOException, MATLABException;
}

This interface creates an array of primitive double types, corresponding to the MATLAB primitive
types (Double, in MATLAB, unless explicitly declared) in pricecalc.m. A one to one mapping exists
between the input arguments in both the MATLAB function and the Java interface The interface
specifies compatible type double. This compliance between the MATLAB and Java signatures
demonstrates the guidelines listed in “Java Client Coding Best Practices” on page 2-2.

Instantiate MWClient, Create Proxy, and Specify Deployable Archive

In the ServerBondToolsFactory class, perform a typical MATLAB Production Server client setup:

1 Instantiate MWClient with an instance of MWHttpClient:

...
 private final MWClient client = new MWHttpClient();

2 Call createProxy on the new client instance. Specify port number (9910) and the deployable
archive name (BondTools) the server is hosting in the auto_deploy folder:

...
public BondTools newInstance () throws Exception
{
 mpsUrl = new URL("http://user1.dhcp.mathworks.com:9910/BondTools");
 return client.createProxy(mpsUrl, BondTools.class);
}
...

Use dispose() Consistently to Free System Resources

This application makes use of the Factory pattern to encapsulate creation of several types of objects.

Any time you create objects—and therefore allocate resources—ensure you free those resources
using dispose().

For example, note that in ServerBondToolsFactory.java, you dispose of the MWHttpClient
instance you created in “Instantiate MWClient, Create Proxy, and Specify Deployable Archive” on
page 2-14 when it is no longer needed.

Additionally, note the dispose() calls to clean up the factories in BondToolsStubFactory.java
and BondTools.java.

2 Java Client Programming

2-14

Step 5: Build the Client Code and Run the Example
Before you attempt to build and run your client code, ensure that you have done the following:

• Added mps_client.jar ($MPS_INSTALL\client\java) to your Java CLASSPATH and Build
Path.

• Copied your deployable archive to your server’s auto_deploy folder.
• Modified your server’s main_config file to point to where your MATLAB Runtime is installed.
• “Start Server Instance” and “Verify Server Status”.

When you run the calculator application, you should see the following output:

 Bond Pricing Tool for Java Client

2-15

Code Multiple Outputs for Java Client
MATLAB allows users to write functions that return multiple outputs.

For example, consider this MATLAB function signature:

function [out_double_array, out_char_array] =
 multipleOutputs (in1_double_array, in2_char_array)

In the MATLAB signature, multipleOutputs has two outputs (out_double_array and
out_char_array) and two inputs (in1_double_array and a in2_char_array, respectively)—a
double array and a char array.

In order to call this function from Java, the interface in the client program must specify the number of
outputs of the function as part of the function signature.

The number of expected output parameters in defined as type integer (int) and is the first input
parameter in the function.

In this case, the matching signature in Java is:

public Object[] multipleOutputs(int num_args, double[]
 in1Double, String in2Char);

where num_args specifies number of output arguments returned by the function. All output
parameters are returned inside an array of type Object.

Note When coding multiple outputs, if you pass an integer as the first input argument through a
MATLAB function, you must wrap the integer in a java.lang.Integer object.

Note the following coding best practices illustrated by this example:

• Both the MATLAB function signature and the Java method signature using the name
multipleOutputs. Both signatures define two inputs and two outputs.

• MATLAB Java interface supports direct conversion from Java double array to MATLAB double
array and from Java string to MATLAB char array. For more information, see “Conversion of Java
Types to MATLAB Types” on page A-2 and “Conversion of MATLAB Types to Java Types” on
page A-3.

For more information, see “Java Client Coding Best Practices” on page 2-2.

2 Java Client Programming

2-16

Code Variable-Length Inputs and Outputs for Java Client
MATLAB supports functions with both variable number of input arguments (varargin) and variable
number of output arguments (varargout).

MATLAB Production Server Java client supports the ability to work with variable-length inputs
(varargin) and outputs (varargout). varargin supports one or more of any data type supported
by MATLAB. See the MATLAB Function Reference for complete information on varargin and
varargout.

For example, consider this MATLAB function:

function varargout = vararginout(double1, char2, varargin)

In this example, the first input is type double (double1) and the second input type is a char (char2).
The third input is a variable-length array that can contain zero, or one or more input parameters of
valid MATLAB data types.

The corresponding client method signature must include the same number of output arguments as
the first input to the Java method.

Therefore, the Java method signature supported by MATLAB Production Server Java client, for the
varargout MATLAB function, is as follows:
public Object[] vararginout(int nargout, double in1, String in2, Object... vararg);

In the vararginout method signature, you specify equivalent Java types for in1 and in2.

The variable number of input parameters is specified in Java as Object... vararg.

The variable number of output parameters is specified in Java as return type Object[].

Note the following coding best practices illustrated by this example:

• Both the MATLAB function signature and the Java method signature using the name
vararginout. Both signatures define two inputs and two outputs.

• MATLAB Java interface supports direct conversion from Java double array to MATLAB double
array and from Java string to MATLAB char array. For more information, see “Conversion of Java
Types to MATLAB Types” on page A-2 and “Conversion of MATLAB Types to Java Types” on
page A-3.

 Code Variable-Length Inputs and Outputs for Java Client

2-17

Marshal MATLAB Structures (Structs) in Java
Structures (or structs) are MATLAB arrays with elements accessed by textual field designators.

Structs consist of data containers, called fields. Each field stores an array of some MATLAB data type.
Every field has a unique name.

A field in a structure can have a value compatible with any MATLAB data type, including a cell array
or another structure.

In MATLAB, a structure is created as follows:

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

This code creates a scalar structure (S) with three fields:

S =
 name: 'Ed Plum'
 score: 83
 grade: 'B+'

A multidimensional structure array can be created by inserting additional elements:

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';

In this case, a structure array of dimensions (1,2) is created. Structs with additional dimensions are
also supported.

Since Java does not natively support MATLAB structures, marshaling structs between the server and
client involves additional coding.

Marshaling a Struct Between Client and Server
MATLAB structures are ordered lists of name-value pairs. You represent them in Java with a class
using fields consisting of the same case-sensitive names.

The Java class must also have public get and set methods defined for each field. Whether or not
the class needs both get and set methods depends on whether it is being used as input or output, or
both.

Following is a simple example of how a MATLAB structure can be marshaled between Java client and
server.

In this example, MATLAB function sortstudents takes in an array of structures (see “Marshal
MATLAB Structures (Structs) in Java” on page 2-18 for details).

Each element in the struct array represents different information about a student. sortstudents
sorts the input array in ascending order by score of each student, as follows:
function sorted = sortstudents(unsorted)
% Receive a vector of students as input
% Get scores of all the students
scores = {unsorted.score};

2 Java Client Programming

2-18

% Convert the cell array containing scores into a numeric array or doubles
scores = cell2mat(scores);
% Sort the scores array
[s i] = sort(scores);
% Sort the students array based on the sorted scores array
sorted = unsorted(i);

Note Even though this example only uses the scores field of the input structure, you can also work
with name and grade fields in a similar manner.

You package sortstudents into a deployable archive (scoresorter.ctf) using the Production
Server Compiler app (see “Create Deployable Archive for MATLAB Production Server” for details)
and make it available on the server at http://localhost:9910/scoresorter for access by the
Java client (see “Share Deployable Archive”).

Before defining the Java interface required by the client, define the MATLAB structure, Student,
using a Java class.

Student declares the fields name, score and grade with appropriate types. It also contains public
get and set functions to access these fields.

Java Class Student
public class Student{

 private String name;
 private int score;
 private String grade;

 public Student(){
 }

 public Student(String name, int score, String grade){
 this.name = name;
 this.score = score;
 this.grade = grade;
 }

 public String getName(){
 return name;
 }

 public void setName(String name){
 this.name = name;
 }

 public int getScore(){
 return score;
 }

 public void setScore(int score){
 this.score = score;
 }

 public String getGrade(){
 return grade;
 }

 Marshal MATLAB Structures (Structs) in Java

2-19

 public void setGrade(String grade){
 this.grade = grade;
 }

 public String toString(){
 return "Student:\n\tname : " + name +
 "\n\tscore : " + score + "\n\tgrade : " + grade;
 }
}

Note Note that this example uses the toString method for marshaling convenience. It is not
required.

Next, define the Java interface StudentSorter, which calls method sortstudents and uses the
Student class to marshal inputs and outputs.

Since you are working with a struct type, Student must be included in the annotation
MWStructureList .

interface StudentSorter {
 @MWStructureList({Student.class})
 Student[] sortstudents(Student[] students)
 throws IOException, MATLABException;
}

Finally, you write the Java application (MPSClientExample) for the client:

1 Create MWHttpClient and associated proxy (using createProxy) as shown in “Create a Java
Client Using the MWHttpClient Class” on page 1-3.

2 Create an unsorted student struct array in Java that mimics the MATLAB struct in naming,
number of inputs and outputs, and type validity in MATLAB. See “Java Client Coding Best
Practices” on page 2-2 for more information.

3 Sort the student array and display it.

import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;
import com.mathworks.mps.client.annotations.MWStructureList;

interface StudentSorter {
 @MWStructureList({Student.class})
 Student[] sortstudents(Student[] students)
 throws IOException, MATLABException;
}

public class ClientExample {

 public static void main(String[] args){

 MWClient client = new MWHttpClient();
 try{
 StudentSorter s =
 client.createProxy(new URL("http://localhost:9910/scoresorter"),
 StudentSorter.class);
 Student[] students = new Student[]{new Student("Toni Miller", 90, "A"),
 new Student("Ed Plum", 80, "B+"),
 new Student("Mark Jones", 85, "A-")};

2 Java Client Programming

2-20

 Student[] sorted = s.sortstudents(students);
 System.out.println("Student list sorted in the
 ascending order of scores : ");
 for(Student st:sorted){
 System.out.println(st);
 }
 }catch(IOException ex){
 System.out.println(ex);
 }catch(MATLABException ex){
 System.out.println(ex);
 }finally{
 client.close();
 }
 }
}

Map Java Field Names to MATLAB Field Names

Java classes that represent MATLAB structures use the Java Beans Introspector class (https://
docs.oracle.com/javase/6/docs/api/java/beans/Introspector.html) to map properties to fields and its
default naming conventions are used.

This means that by default its decapitalize() method is used. This maps the first letter of a Java
field into a lower case letter. By default, it is not possible to define a Java field which will map to a
MATLAB field which starts with an upper case.

You can override this behavior by implementing a BeanInfo class with a custom
getPropertyDescriptors() method. For example:

import java.beans.IntrospectionException;
import java.beans.PropertyDescriptor;
import java.beans.SimpleBeanInfo;
public class StudentBeanInfo extends SimpleBeanInfo
{
 @Override
 public PropertyDescriptor[] getPropertyDescriptors()
 {
 PropertyDescriptor[] props = new PropertyDescriptor[3];
 try
 {
 // name uses default naming conventions so we do not need to
 // explicitly specify the accessor names.
 props[0] = new PropertyDescriptor("name",MyStruct.class);
 // score uses default naming conventions so we do not need to
 // explicitly specify the accessor names.
 props[1] = new PropertyDescriptor("score",MyStruct.class);
 // Grade uses a custom naming convention so we do need to
 // explicitly specify the accessor names.
 props[1] = new PropertyDescriptor("Grade",MyStruct.class,
 "getGrade","setGrade");
 return props;
 }
 catch (IntrospectionException e)
 {
 e.printStackTrace();
 }

 return null;
 }
}

 Marshal MATLAB Structures (Structs) in Java

2-21

https://docs.oracle.com/javase/6/docs/api/java/beans/Introspector.html
https://docs.oracle.com/javase/6/docs/api/java/beans/Introspector.html

Defining MATLAB Structures Only Used as Inputs

When defining Java structs as inputs, follow these guidelines:

• Ensure that the fields in the Java class match the field names in the MATLAB struct exactly. The
field names are case sensitive.

• Use public get methods on the fields in the Java class. Whether or not the class needs both get
and set methods for the fields depends on whether it is being used as input or output or both. In
this example, note that when student is passed as an input to method sortstudents, only the
get methods for its fields are used by the data marshaling algorithm.

As a result, if a Java class is defined for a MATLAB structure that is only used as an input value, the
set methods are not required. This version of the Student class only represents input values:

public class Student{

 private String name;
 private int score;
 private String grade;

 public Student(String name, int score, String grade){
 this.name = name;
 this.score = score;
 this.grade = grade;
 }

 public String getName(){
 return name;
 }

 public int getScore(){
 return score;
 }

 public String getGrade(){
 return grade;
 }
}

Defining MATLAB Structures Only Used as an Output

When defining Java structs as outputs, follow these guidelines:

• Ensure that the fields in the Java class match the field names in the MATLAB struct exactly. The
field names are case sensitive.

• Create a new instance of the Java class using the structure received from MATLAB. Do so by using
set methods or @ConstructorProperties annotation provided by Java. get methods are not
required for a Java class when defining output-only MATLAB structures.

An output-only Student class using set methods follows:

public class Student{

 private String name;
 private int score;
 private String grade;

2 Java Client Programming

2-22

 public void setName(String name){
 this.name = name;
 }

 public void setScore(int score){
 this.score = score;
 }

 public void setGrade(String grade){
 this.grade = grade;
 }
}

An output-only Student class using @ConstructorProperties follows:

public class Student{

 private String name;
 private int score;
 private String grade;

 @ConstructorProperties({"name","score","grade"})
 public Student(String n, int s, String g){
 this.name = n;
 this.score = s;
 this.grade = g;
 }
}

Note If both set methods and @ConstructorProperties annotation are provided, set methods
take precedence over @ConstructorProperties annotation.

Defining MATLAB Structures Used as Both Inputs and Outputs

If the Student class is used as both an input and output, you need to provide get methods to
perform marshaling to MATLAB. For marshaling from MATLAB, use set methods or
@ConstructorProperties annotation on page 2-22.

 Marshal MATLAB Structures (Structs) in Java

2-23

Data Conversion with Java and MATLAB Types

Working with MATLAB Data Types
There are many data types that you can work with in MATLAB. Each of these data types is in the form
of a matrix or array. You can build matrices and arrays of floating-point and integer data, characters
and strings, and logical true and false states. Structures and cell arrays provide a way to store
dissimilar types of data in the same array.

All of the fundamental MATLAB classes are circled in the diagram “Fundamental MATLAB Data
Types” on page 2-24.

The Java client follows Java-MATLAB-Interface (JMI) rules for data marshaling. It expands those rules
for scalar Java boxed types, allowing auto-boxing and un-boxing, which JMI does not support.

Note Function Handles are not supported by MATLAB Production Server.

Fundamental MATLAB Data Types

The expected conversion results for Java to MATLAB types are listed in “Conversion of Java Types to
MATLAB Types” on page A-2. The expected conversion results for MATLAB to Java types are listed
in “Conversion of MATLAB Types to Java Types” on page A-3.

2 Java Client Programming

2-24

Scalar Numeric Type Coercion
Scalar numeric MATLAB types can be assigned to multiple Java numeric types as long as there is no
loss of data or precision.

The main exception to this rule is that MATLAB double scalar data can be mapped into any Java
numeric type. Because double is the default numeric type in MATLAB, this exception provides more
flexibility to the users of MATLAB Production Server Java client API.

MATLAB to Java Numeric Type Compatibility describes the type compatibility for scalar numeric
coercion.

MATLAB to Java Numeric Type Compatibility
MATLAB Type Java Types
uint8 short, int, long, float, double
int8 short, int, long, float, double
uint16 int, long, float, double
int16 int, long, float, double
uint32 long, float, double
int32 long, float, double
uint64 float, double
int64 float, double
single double
double byte, short, int, long, float

Dimensionality in Java and MATLAB Data Types
In MATLAB, dimensionality is an attribute of the fundamental types and does not add to the number
of types as it does in Java.

In Java, double, double[] and double[][][] are three different data types. In MATLAB, there is
only a double data type and possibly a scalar instance, a vector instance, or a multi-dimensional
instance.

Java Signature Value Returned from MATLAB
double[][][] foo() ones(1,2,3)

Dimension Coercion

How you define your MATLAB function and corresponding Java method signature determines if your
output data will be coerced, using padding or truncation.

This coercion is automatically performed for you. This section describes the rules followed for
padding and truncation.

Padding

When a Java method's return type has more dimensions than MATLAB’s, MATLAB's dimensions are
be padded with ones (1s) to match the required number of output dimensions in Java.

 Data Conversion with Java and MATLAB Types

2-25

You, as a developer, do not have to do anything to pad dimensions.

The following tables provide examples of how padding is performed for you:

How MATLAB Pads Your Java Method Return Type

When Dimensions in
MATLAB are:

And Dimensions in Java
are:

This Type in Java: Returns this Type in
MATLAB:

size(a) is[2,3] Array will be returned as
size 2,3,1,1

double [][][][]
foo()

function a = foo a =
ones(2,3);

Padding Dimensions in MATLAB and Java Data Conversion

MATLAB Array Dimensions Declared Output Java Type Output Java Dimensions
2 x 3 double[][][] 2 x 3 x 1
2 x 3 double[][][][] 2 x 3 x 1 x 1

Truncation

When a Java method's return type has fewer dimensions than MATLAB’s, MATLAB’s dimensions are
truncated to match the required number of output dimensions in Java. This is only possible when
extra dimensions for MATLAB array have values of ones (1s) only.

To compute appropriate number of dimensions in Java, excess ones are truncated, in this order:

1 From the end of the array
2 From the array’s beginning
3 From the middle of the array (scanning front-to-back).

You, as a developer, do not have to do anything to truncate dimensions.

The following tables provide examples of how truncation is performed for you:

How MATLAB Truncates Your Java Method Return Type

When Dimensions in
MATLAB are:

And Dimensions in Java
are:

This Type in Java: Returns this Type in
MATLAB

size(a) is
[1,2,1,1,3,1]

Array will be returned as
size 2,3

double [][] foo() function a = foo a =
ones(1,2,1,1,3,1);

Following are some examples of dimension shortening using the double numeric type:

2 Java Client Programming

2-26

Truncating Dimensions in MATLAB and Java Data Conversion
MATLAB Array Dimensions Declared Output Java Type Output Java Dimensions
1 x 1 double 0
2 x 1 double[] 2
1 x 2 double[] 2
2 x 3 x 1 double[][] 2 x 3
1 x 3 x 4 double[][] 3 x 4
1 x 3 x 4 x 1 x 1 double[][][] 1 x 3 x 4
1 x 3 x 1 x 1 x 2 x 1 x 4 x
1

double[][][][] 3 x 2 x 1 x 4

Empty (Zero) Dimensions
Passing arrays of zero (0) dimensions (sometimes called empties) results in an empty matrix from
MATLAB.

Java Signature Value Returned from MATLAB
double[] foo() []

Passing Java Empties to MATLAB

When a null is passed from Java to MATLAB, it will always be marshaled into [] in MATLAB as a
zero by zero (0 x 0) double. This is independent of the declared input type used in Java. For example,
all the following methods can accept null as an input value:

void foo(String input);
void foo(double[] input);
void foo(double[][] input);
void foo(Double input);

And in MATLAB, null will be received as:

[] i.e. 0x0 double

Passing MATLAB Empties to Java

An empty array in MATLAB has at least one zero (0) assigned in at least one dimension. For
function a = foo, for example, any one of the following values is acceptable:

 a = [];
 a = ones(0);
 a = ones(0,0);
 a = ones(1,2,0,3);

Empty MATLAB data will be returned to Java as null for all the above cases.

For example, in Java, the following signatures return null when a MATLAB function returns an
empty array:

double[] foo();
double[][] foo();
Double foo();

 Data Conversion with Java and MATLAB Types

2-27

However, when MATLAB returns an empty array and the return type in Java is a scalar primitive (as
with double foo();, for example) an exception is thrown . :

IllegalArgumentException
("An empty MATLAB array cannot be represented by a
 primitive scalar Java type")

Boxed Types
Boxed Types are used to wrap opaque C structures.

Java client will perform primitive to boxed type conversion if boxed types are used as return types in
the Java method signature.

Java Signature Value Returned from MATLAB
Double foo() 1.0

For example, the following method signatures work interchangeably:

double[] foo(); Double[] foo();
double[][][] foo(); Double[][][] foo();

Signed and Unsigned Types in Java and MATLAB Data Types
Numeric classes in MATLAB include signed and unsigned integers. Java does not have unsigned
types.

2 Java Client Programming

2-28

Java Client Logging
Logging capability is available in the Java client to record details such as HTTP request statuses,
server URLs, and output data. Logging is implemented using the slf4j, so it can work with multiple
logging engines, such as log4j, logback, or java.util.logging.

It can utilize the logging engine used in your project, from one of the slf4j supported engines, or
load its own embedded engine if none is provided.

Use the Embedded log4j Engine
When your project does not use a logging engine, and you want to log just the Java client activity, you
can activate the Java client embedded log4j engine it can use once activated. To use the embedded
engine, pass in a log4j configuration file to the Java application at startup. To do this, add the file
location URL to the log4j.configuration JVM property. The URL to a file on the file system is:

file:/path/to/file/filename

The embedded engine is loaded only if no engine is provided.

The default log4j configuration file that outputs to standard out is found at the following location:
$MPS_INSTALL/client/java/log4j.properties.

Example (UNIX® syntax):

 java -cp ./mps_client.jar:./Magic.jar -Dlog4j.configuration=file:/$MPS_INSTALL/client/java/log4j.properties Magic

 Java Client Logging

2-29

Use an Existing Logging Engine
If your project uses an existing engine, the Java client can use that engine for logging. Your project
can use any engine that supports slf4j. To use an existing engine, you must be able to load it into
your Java application, and it must be on your Java classpath. If you need different version of the
slf4j engine, you can load your own slf4j library and include it in your classpath.

For java.util.logging, you need to load and use the java.util.logging.Logger class in your
Java application code before the com.mathworks.mps.client.MWHttpClient class is loaded.

For logback, add both the logback-classic and logback-core jar files onto the classpath.

If you encounter version mismatch issues between your engine and slf4j, it is best to load your own
slf4j-api.jar of the appropriate version by setting it on the Java classpath. This situation can
occur if you are using later versions of logback.

Example (UNIX syntax):

#Using existing log4j engine
java -cp ./log4j.jar:./mps_client.jar:./MyApplication.jar -Dlog4j.configuration=file:/path/to/log4j.properties MainClass

#Using existing logback engine
java -cp ./logback-classic.jar:./logback-core.jar:./mps_client.jar:./MyApplication.jar -Dlogback.configurationFile=/path/to/config.xml MainClass

#Using existing slf4j API
java -cp ./slf4j-api.jar:./mps_client.jar:./MyApplication.jar MainClass

#Using existing logback engine with existing slf4j
java -cp ./slf4j-api.jar:./logback-classic.jar:./logback-core.jar:./mps_client.jar:./MyApplication.jar -Dlogback.configurationFile=/path/to/config.xml MainClass

Refer to the third-party logging engine documentation for more information on how to configure the
logging behavior.

Note If loading existing slf4j or logback jars, it must be set in front of the mps_client.jar on
the Java classpath.

See Also

2 Java Client Programming

2-30

Asynchronous RESTful Requests Using Protocol Buffers in the
Java Client

This example shows how to make asynchronous RESTful requests using the Java client API, MATLAB
Production Server “RESTful API”, and protocol buffers (protobuf). The example provides and explains
a sample Java client, AsyncExample.java, for evaluating a MATLAB function deployed on the
server.

To use protobuf when making a request to the server, set the HTTP Content-Type header to
application/x-google-protobuf in the client code. The Java client library provides helper
classes to internally create protobuf messages based on a proto format and returns the corresponding
byte array. Use this byte array in the HTTP request body. The Java client library provides methods
and classes to deserialize the protobuf responses.

To use the Java client library, you must include mps_client.jar in the CLASSPATH.

The following table shows where to find the mps_client.jar file, Javadoc, and sample code for the
example.

Location of mps_client.jar • MPS_INSTALL/client/java
• MATLABProductionServer_<release>_Cl

ients/java
Location of Javadoc • MPS_INSTALL/client/java/doc

• MATLABProductionServer_<release>_Cl
ients/java/doc

Location of code for the example files • MPS_INSTALL/client/java/examples
• MATLABProductionServer_<release>_Cl

ients/java/examples/MagicSquare
• MPS_INSTALL is the location in which MATLAB Production Server is installed.
• MATLABProductionServer_<release>_Clients is the folder containing MATLAB Production

Server client libraries that you can download from https://www.mathworks.com/products/matlab-
production-server/client-libraries.html.

The example uses the java.net package for making HTTP requests to evaluate a MATLAB function
deployed on a MATLAB Production Server instance running on http://localhost:9910.

Deploy your MATLAB Function on the Server
Write a MATLAB function mymagic that uses the magic function to create a magic square, then
deploy it on the server.

For information on how to deploy, see “Create Deployable Archive for MATLAB Production Server”.

function m = mymagic(in)

 m = magic(in);
end

The function mymagic takes a single int32 input and returns a magic square as a 2-D double array.

 Asynchronous RESTful Requests Using Protocol Buffers in the Java Client

2-31

https://www.mathworks.com/products/matlab-production-server/client-libraries.html
https://www.mathworks.com/products/matlab-production-server/client-libraries.html

Make an Asynchronous Request to the Server
1 Construct the request URL.

In the Java client, use the POST Asynchronous Request to make the initial request to the server.
The request URL comprises of the address of the server instance, the name of the deployed
archive and the name of the MATLAB function to evaluate. Set the HTTP request mode to async
and client to a user-defined identifier value in the query parameters.

 String clientId = "123";
 String mpsBaseUrl = "http://localhost:9910";
 URL url;
 url = new URL(mpsBaseUrl + "/mymagic/mymagic?mode=async&client="+clientId);

2 Set the request headers.

Set the HTTP Content-Type header to application/x-google-protobuf, as the API
returns a byte array of protocol buffer messages.

 final static protected String CONTENT_TYPE = "application/x-google-protobuf";
 HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setDoOutput(true);
 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);

3 Create an HTTP request body containing the protocol buffer message.

Use the newInstance(arg1, arg2, arg3) method defined in the MATLABParams class to
build the protocol buffer message. Since the mymagic function returns a single 2-D array, set
arg1 to 1 and arg2 to double[][].class. Specify an integer value for arg3, which is the
input to the mymagic function.

 MATLABParams mlMakeBody = MATLABParams.newInstance(1, double[][].class, 2);
4 Send the request to the server.

Write the MATLABParams mlMakeBody object to the output stream of the HTTP request.

 OutputStream output = urlConnection.getOutputStream();
 output.write(mlMakeBody.getRequestBody());
 output.flush();

5 Receive and interpret the server response.

On successful execution of the HTTP requests, the server responds with a protocol buffer
message. Parse the protocol buffer message using methods from the MATLABRequestHandle
class to get details such as the state of the request, the request URL, and the last modified
sequence value of the request.

 MATLABRequestHandle mlInitialResponse =
 MATLABRequestHandle.newInstance(urlConnection.getInputStream());
 System.out.println("First Request has been Sent. Inital response is below");
 System.out.println("State: "+ mlInitialResponse.getState() + " " + "Request URL: "
 +mlInitialResponse.getRequestURL() + " Last modified sequence: " +
 mlInitialResponse.getLastModifiedSeq());

Get the State Information of the Request
1 Make a request to get the request state information.

2 Java Client Programming

2-32

Use the GET State Information RESTful API to get the state of the request. In the request URL,
set the query parameter format to protobuf, so that the server returns the output in protocol
buffer format.

 url = new URL(mpsBaseUrl + mlInitialResponse.getRequestURL() + "/info?" + "format=protobuf");
 urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);
 urlConnection.setRequestMethod("GET");
 urlConnection.connect();

2 Parse the response.

Parse the response using methods defined in the MATLABRequest class to get the state of the
request and the current lastModifiedSeq value at the server.

 MATLABRequest requestInfoTmp = MATLABRequest.newInstance(urlConnection.getInputStream());
 System.out.println("State: "+requestInfoTmp.getState() + " Last modified sequence: " + requestInfoTmp.getLastModifiedSeq());

In asynchronous mode, a client is able to post multiple requests to the server. To get the state
information of each POST request, you must make a corresponding request to the GET State
Information RESTful API.

View the Collection of Requests Owned by a Particular Client
Use the GET Collection of Requests RESTful API to view information about multiple requests sent by
a particular client represented by clientId. In the request URL, set the query parameter format to
protobuf, so that the server returns the output in protocol buffer format. Use the MATLABRequests
class newInstance method to parse the response body of a successful request. The
MATLABRequests class has a getMATLABRequests method that returns a Map of requestURL and
the MATLABRequest object.

 url = new URL(mpsBaseUrl + mlInitialResponse.getInstanceId() + "requests" + "?since="
 + mlInitialResponse.getLastModifiedSeq() + "&format=protobuf&" + "clients=" + clientId);
 urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);
 urlConnection.setRequestMethod("GET");
 urlConnection.connect();

 MATLABRequests updates = MATLABRequests.newInstance(urlConnection.getInputStream());

 Map<String, MATLABRequest> urlUpdates = updates.getMATLABRequests();
 System.out.println("State of the Requests with the client: " + clientId);
 for (String requestURL : urlUpdates.keySet()) {
 System.out.println(requestURL + ":" + urlUpdates.get(requestURL).getState());
 }

Retrieve the Results of a Request
1 Make a request to fetch the response.

Use the GET Result of Request RESTful API to fetch the request results after the request state
has changed to READY or ERROR. In the request URL, set the query parameter format to
protobuf, so that the server returns the output in protocol buffer format.

 url = new URL(mpsBaseUrl + mlInitialResponse.getRequestURL() + "/result?" + "format=protobuf");
 urlConnection = (HttpURLConnection) url.openConnection();

 Asynchronous RESTful Requests Using Protocol Buffers in the Java Client

2-33

 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);
 urlConnection.setRequestMethod("GET");
 urlConnection.connect();

2 Parse the response.

If the request state is READY, use the methods defined in the MATLABResult class to parse the
response. To create a MATLABResult object, pass the MATLABParams mlMakeBody object and
the response body of the GET Result of Request request to the newInstance method.

If an error occurs when the deployed MATLAB function executes, the call to the getResult
method throws a MATLABException that contains the error message from MATLAB.

If the request state is ERROR, use the HTTPErrorInfo class instead of MATLABResult class to
parse the response. Use the methods defined in the HTTPErrorInfo class to get information
about the error.

 if (requestInfoTmp.compareTo(MATLABRequestState.ERROR_STATE) == 0) {
 HTTPErrorInfo httpErrorInfo = HTTPErrorInfo.newInstance(urlConnection.getInputStream());
 System.out.println("ErrorCode: " + httpErrorInfo.getHttpErrorCode());
 System.out.println("Error Message: " + httpErrorInfo.getHttpErrorMessage());
 System.out.println("Error body: " + httpErrorInfo.getHttpBody());
 }
 else{
 MATLABResult<double[][]> mlFinalResult1 = MATLABResult.newInstance(mlMakeBody, urlConnection.getInputStream());
 try{
 double[][] magicSq1 = mlFinalResult1.getResult();
 printResult(magicSq1);
 }catch(MATLABException e){
 e.printStackTrace();
 }
 }

3 Display the results.

Write a helper method printResult that takes as input the result that is parsed from the
response body and prints the corresponding 2-D array.

 private static void printResult(double[][] result) {
 for (double[] row : result) {
 for (double element : row) {
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }

Sample code for the AsyncExample.java Java client follows.

Code:

AsyncExample.java
import com.mathworks.mps.client.MATLABException;
import com.mathworks.mps.client.rest.*;

import java.io.OutputStream;
import java.net.HttpURLConnection;
import java.net.URL;

2 Java Client Programming

2-34

public class AsyncExample{

 final static protected String CONTENT_TYPE = "application/x-google-protobuf";

 public static void main(String[] args){

 try{
 String clientId = "123";

 // URL of the MATLAB Production Server.
 String mpsBaseUrl = "http://localhost:9910";

 // Use the java.net package's URLConnection as HTTP Client in this example.
 URL url;
 url = new URL(mpsBaseUrl + "/mymagic/mymagic?mode=async&client="+clientId);

 HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setDoOutput(true);
 //Set Content-Type to protobuf.
 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);

 // Make the initial POST request body with MATLABParams class.
 MATLABParams mlMakeBody = MATLABParams.newInstance(1, double[][].class, 2);

 // Write the MATLABParams object into the output stream of the HTTP Request.
 OutputStream output = urlConnection.getOutputStream();
 output.write(mlMakeBody.getRequestBody());
 output.flush();

 // Parse the response body of the above HTTP request with methods from the MATLABResult class
 // to retrieve the request URL, lastModified value and state of the request.
 MATLABRequestHandle mlInitialResponse = MATLABRequestHandle.newInstance(urlConnection.getInputStream());
 System.out.println("First Request has been Sent. Initial response is below");
 System.out.println("State: "+ mlInitialResponse.getState() + " " + "Request URL: "+mlInitialResponse.getRequestURL() + " Last modified sequence: " + mlInitialResponse.getLastModifiedSeq());

 // Query for the state of the request.
 url = new URL(mpsBaseUrl + mlInitialResponse.getRequestURL() + "/info?" + "format=protobuf");
 urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);
 urlConnection.setRequestMethod("GET");
 urlConnection.connect();

 MATLABRequest requestInfoTmp = null;
 // Parse the response body using methods from MATLABRequest class.
 requestInfoTmp = MATLABRequest.newInstance(urlConnection.getInputStream());
 System.out.println("State: "+requestInfoTmp.getState() + " Last modified sequence: " + requestInfoTmp.getLastModifiedSeq());

 // Loop to check if the state of the request is READY_STATE.
 for (int i = 0; i < 20; i++) {
 url = new URL(mpsBaseUrl + mlInitialResponse.getRequestURL() + "/info?" + "format=protobuf");
 urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);
 urlConnection.setRequestMethod("GET");
 urlConnection.connect();

 // Parse the response body using methods from MATLABRequest class.

 Asynchronous RESTful Requests Using Protocol Buffers in the Java Client

2-35

 requestInfoTmp = MATLABRequest.newInstance(urlConnection.getInputStream());
 System.out.println("State: "+requestInfoTmp.getState() + " Last modified sequence: " + requestInfoTmp.getLastModifiedSeq());
 Thread.sleep(1000);
 }

 // Once the state changes to READY_STATE, query for the result.
 url = new URL(mpsBaseUrl + mlInitialResponse.getRequestURL() + "/result?" + "format=protobuf");
 urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);
 urlConnection.setRequestMethod("GET");
 urlConnection.connect();

 // Parse the response body of the above HTTP request using methods from MATLABResult class.
 // The MATLABParams object created earlier is an input argument to the newInstance method.
 // If there is any error in MATLAB, call to getResult() throws a MATLABException which contains the error message
 // displayed in MATLAB.
 MATLABResult mlFinalResult1 = MATLABResult.newInstance(mlMakeBody, urlConnection.getInputStream());
 try{
 double[][] magicSq1 = (double[][]) mlFinalResult1.getResult();
 printResult(magicSq1);
 }catch(MATLABException e){
 e.printStackTrace();
 }
 } catch(Exception e){
 e.printStackTrace();
 }

 }

 // Helper method to print out the magic square generated by MATLAB based on the input.
 private static void printResult(double[][] result) {
 for (double[] row : result) {
 for (double element : row) {
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }
}

See Also

More About
• “Synchronous RESTful Requests Using Protocol Buffers in the Java Client” on page 2-37
• “Struct Support for RESTful Requests Using Protocol Buffers in the Java Client” on page 2-41
• “Create a Java Client Using the MWHttpClient Class” on page 1-3
• “Create a Java MATLAB Production Server Client Using the MWHttpClient Class” on page 1-2

2 Java Client Programming

2-36

Synchronous RESTful Requests Using Protocol Buffers in the
Java Client

This example shows how to make synchronous RESTful requests using the Java client API, MATLAB
Production Server “RESTful API”, and protocol buffers (protobuf). The example provides and explains
a sample Java client, SyncExample.java, for evaluating a MATLAB function deployed on the server.

To use protobuf when making a request to the server, set the HTTP Content-Type header to
application/x-google-protobuf in the client code. The Java client library provides helper
classes to internally create protobuf messages based on a proto format and returns the corresponding
byte array. Use this byte array in the HTTP request body. The Java client library provides methods
and classes to deserialize the protobuf responses.

To use the Java client library, you must include mps_client.jar in the CLASSPATH.

The following table shows where to find the mps_client.jar file, Javadoc, and sample code for the
example.

Location of mps_client.jar • MPS_INSTALL/client/java
• MATLABProductionServer_<release>_Cl

ients/java
Location of Javadoc • MPS_INSTALL/client/java/doc

• MATLABProductionServer_<release>_Cl
ients/java/doc

Location of code for the example files • MPS_INSTALL/client/java/examples
• MATLABProductionServer_<release>_Cl

ients/java/examples/MagicSquare
• MPS_INSTALL is the location in which MATLAB Production Server is installed.
• MATLABProductionServer_<release>_Clients is the folder containing MATLAB Production

Server client libraries that you can download from https://www.mathworks.com/products/matlab-
production-server/client-libraries.html.

The example uses the java.net package for making HTTP requests to evaluate a MATLAB function
deployed on a MATLAB Production Server instance running on http://localhost:9910.

Deploy your MATLAB Function on the Server
Write a MATLAB function mymagic that uses the magic function to create a magic square, then
deploy it on the server.

For information on how to deploy, see “Create Deployable Archive for MATLAB Production Server”.

function m = mymagic(in)

 m = magic(in);
end

The function mymagic takes a single int32 input and returns a magic square as a 2-D double array.

 Synchronous RESTful Requests Using Protocol Buffers in the Java Client

2-37

https://www.mathworks.com/products/matlab-production-server/client-libraries.html
https://www.mathworks.com/products/matlab-production-server/client-libraries.html

Make a Synchronous Request to the Server
1 Construct the request URL.

In the Java client, use the POST Synchronous Request to make the initial request to the server.
The request URL comprises of the address of the server instance, the name of the deployed
archive and the name of the MATLAB function to evaluate.

 String mpsBaseUrl = "http://localhost:9910";
 URL url;
 url = new URL(mpsBaseUrl + "/mymagic/mymagic");

2 Set the request headers.

Set the HTTP Content-Type header to application/x-google-protobuf, as the API
returns a byte array of protocol buffer messages.

 final static protected String CONTENT_TYPE = "application/x-google-protobuf";
 HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setDoOutput(true);
 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);

3 Create an HTTP request body containing the protocol buffer message.

The function mymagic takes a single int32 input and returns a magic square as a 2-D double
array.

Use the newInstance(arg1, arg2, arg3) method defined in the MATLABParams class to
build the message. Since the mymagic function returns a single 2-D array, set arg1 to 1 and
arg2 to double[][].class. Specify an integer value for arg3, which is the input to the
mymagic function.

 MATLABParams mlMakeBody = MATLABParams.newInstance(1, double[][].class, 2);
4 Send the request to the server.

Write the MATLABParams mlMakeBody object to the output stream of the HTTP request.

 OutputStream output = urlConnection.getOutputStream();
 output.write(mlMakeBody.getRequestBody());
 output.flush();

Receive and Interpret the Server Response
On successful execution of the HTTP request, the server responds with a protocol buffer message.
Parse the protocol buffer message using methods from the MATLABResult class to get the result of
the request. To create a MATLABResult object, pass the MATLABParams mlMakeBody object and the
response body of the HTTP request to the newInstance method.

If an error occurs when the deployed MATLAB function executes, then the call to the getResult
method throws a MATLABException that contains the error message from MATLAB.

 MATLABResult<double[][]> mlFinalResult1 =
 MATLABResult.newInstance(mlMakeBody, urlConnection.getInputStream());
 try{
 double[][] magicSq1 = mlFinalResult1.getResult();
 printResult(magicSq1);
 }catch(MATLABException e){

2 Java Client Programming

2-38

 e.printStackTrace();
 }

Write a helper method printResult which takes as input the result that is parsed from the response
body and prints the corresponding 2-D array.

 private static void printResult(double[][] result) {
 for (double[] row : result) {
 for (double element : row) {
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }

Sample code for the SyncExample.java Java client follows.

Code:

SyncExample.java

import com.mathworks.mps.client.MATLABException;
import com.mathworks.mps.client.rest.MATLABParams;
import com.mathworks.mps.client.rest.MATLABResult;

import java.io.OutputStream;
import java.net.HttpURLConnection;
import java.net.URL;

public class SyncExample{

 final static protected String CONTENT_TYPE = "application/x-google-protobuf";

 public static void main(String[] args){

 try{
 // URL of the MATLAB Production Server.
 String mpsBaseUrl = "http://localhost:9910";

 // Use the java.net package's URLConnection as HTTP Client in this example.
 URL url;
 url = new URL(mpsBaseUrl + "/mymagic/mymagic");
 HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setDoOutput(true);
 //Set Content-Type to protobuf.
 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);

 // Make the initial POST request body with MATLABParams class.
 MATLABParams mlMakeBody = MATLABParams.newInstance(1, double[][].class, 2);

 // Write the MATLABParams object into the output stream of the HTTP request.
 OutputStream output = urlConnection.getOutputStream();
 output.write(mlMakeBody.getRequestBody());
 output.flush();

 // Parse the response body of the above HTTP request with methods from the MATLABResult class.
 // The MATLABParams object created earlier is an input argument to the newInstance method.

 Synchronous RESTful Requests Using Protocol Buffers in the Java Client

2-39

 // If there is any error in MATLAB, call to getResult() throws a MATLABException which contains the error message
 // displayed in MATLAB.
 MATLABResult mlFinalResult1 = MATLABResult.newInstance(mlMakeBody, urlConnection.getInputStream());
 try{
 double[][] magicSq1 = (double[][]) mlFinalResult1.getResult();
 printResult(magicSq1);
 }catch(MATLABException e){
 e.printStackTrace();
 }
 }catch(Exception e){
 e.printStackTrace();
 }
 }

 // Helper method to print out the magic square generated by MATLAB based on the input.
 private static void printResult(double[][] result) {
 for (double[] row : result) {
 for (double element : row) {
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }
}

See Also

More About
• “Asynchronous RESTful Requests Using Protocol Buffers in the Java Client” on page 2-31
• “Struct Support for RESTful Requests Using Protocol Buffers in the Java Client” on page 2-41
• “Create a Java Client Using the MWHttpClient Class” on page 1-3
• “Create a Java MATLAB Production Server Client Using the MWHttpClient Class” on page 1-2

2 Java Client Programming

2-40

Struct Support for RESTful Requests Using Protocol Buffers in
the Java Client

This example shows how to send MATLAB structures (struct (MATLAB)) represented as arrays of
Java objects as input when you make a synchronous request using the Java client API, MATLAB
Production Server “RESTful API”, and protocol buffers (protobuf). The example provides and explains
a sample Java client, SortStudentsSyncREST.java, for evaluating a MATLAB function deployed on
the server.

To use protobuf when making a request to the server, set the HTTP Content-Type header to
application/x-google-protobuf in the client code. The Java client library provides helper
classes to internally create protobuf messages based on a proto format and returns the corresponding
byte array. Use this byte array in the HTTP request body. The Java client library provides methods
and classes to deserialize the protobuf responses.

To use the Java client library, you must include mps_client.jar in the CLASSPATH.

The following table shows where to find the mps_client.jar file, Javadoc, and sample code for the
example.

Location of mps_client.jar • MPS_INSTALL/client/java
• MATLABProductionServer_<release>_Cl

ients/java
Location of Javadoc • MPS_INSTALL/client/java/doc

• MATLABProductionServer_<release>_Cl
ients/java/doc

Location of code for the example files • MPS_INSTALL/client/java/examples
• MATLABProductionServer_<release>_Cl

ients/java/examples/SortStudents
• MPS_INSTALL is the location in which MATLAB Production Server is installed.
• MATLABProductionServer_<release>_Clients is the folder containing MATLAB Production

Server client libraries that you can download from https://www.mathworks.com/products/matlab-
production-server/client-libraries.html.

The example uses the java.net package for making HTTP requests to evaluate a MATLAB function
deployed on a MATLAB Production Server instance running on http://localhost:9910.

Deploy your MATLAB function on the server
Write a MATLAB function sortstudents that takes an array of structures as input and returns a
sorted array of students based on their score. Student name, score and grade form the fields of the
input structure. Deploy this function on the server. For information on how to deploy, see “Create
Deployable Archive for MATLAB Production Server”.

function sorted = sortstudents(unsorted)

scores = {unsorted.score};
scores = cell2mat(scores);
[s i] = sort(scores);
sorted = unsorted(i);

 Struct Support for RESTful Requests Using Protocol Buffers in the Java Client

2-41

https://www.mathworks.com/products/matlab-production-server/client-libraries.html
https://www.mathworks.com/products/matlab-production-server/client-libraries.html

Create helper classes
1 Create a Java class Student with the same data members as the input structure.

class Student {
 String name;
 int score;
 String grade;
}

2 Create a Java class StudentMarshaller that extends the interface
MWDefaultMarshalingRules. Since Java does not natively support structs, extending the
MWDefaultMarshalingRules interface lets you implement a new set of marshaling rules for
the list of classes being marshaled and serialize Java objects to structs and deserialize structs to
Java objects.

 public class StudentMarshaller extends MWDefaultMarshalingRules {
 @override
 public List<Class> getStructTypes() {
 List structType = new ArrayList();
 structType.add(Student.class);
 return structType;
 }
 }

3 Create an array of type Student that you want to sort.

 Student[] students = new Student[]{new Student("Toni Miller", 90, "A"),
 new Student("Ed Plum", 80, "B+"),
 new Student("Mark Jones", 85, "A-")};

Make a synchronous request to the server
1 Construct the request URL.

In the Java client, use the POST Synchronous Request RESTful API to make the initial request to
the server. The request URL comprises of the address of the server instance, the name of the
deployed archive and the name of the MATLAB function to evaluate.

 String mpsBaseUrl = "http://localhost:9910";
 URL url;
 url = new URL(mpsBaseUrl + "/sortstudents/sortstudents");

2 Set the request headers.

Set the HTTP Content-Type header to application/x-google-protobuf, as the API
returns a byte array of protocol buffer messages.

 final static protected String CONTENT_TYPE = "application/x-google-protobuf";
 HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setDoOutput(true);
 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);

3 Create the HTTP request body.

To create the HTTP request body, pass the StudentMarshaller class as an argument to the
MATLABParamsnewInstance method. StudentMarshaller class serializes an array of Java
objects of the class Student into an array of structs and deserializes the array of structs into to
an array of Java objects of class Student.

2 Java Client Programming

2-42

 MATLABParams mlMakeBody = MATLABParams.newInstance(1, Student[].class, new StudentMarshaller(), new Object[]{students});
4 Send the request to the server.

Write the MATLABParams mlMakeBody object to the output stream of the HTTP request.

 OutputStream output = urlConnection.getOutputStream();
 output.write(mlMakeBody.getRequestBody());
 output.flush();

Receive and interpret the server response
On successful execution of the HTTP request, the server responds with a protocol buffer message.
Parse the protocol buffer message using methods from the MATLABResult class to get the result of
the request. Create a MATLABResult object using the newInstance method. The newInstance
method takes the MATLABParams mlMakeBody object and the response body of the HTTP request as
input arguments. Set the return type of the MATLABResult object to Student[].

 MATLABResult<Student[]> mlFinalResult = MATLABResult.newInstance(mlMakeBody, urlConnection.getInputStream());
 try{
 Student[] magicSq = mlFinalResult.getResult();
 for (Student student : magicSq) {
 System.out.println(student);
 }
 }catch(MATLABException e){
 e.printStackTrace();
 }

Sample code for the SortStudentsSyncREST.java Java client and the Student.java helper class
follows.

Code:

SortStudentsSyncREST.java

import com.mathworks.mps.client.MATLABException;
import com.mathworks.mps.client.MWDefaultMarshalingRules;
import com.mathworks.mps.client.rest.MATLABParams;
import com.mathworks.mps.client.rest.MATLABResult;

import java.io.IOException;
import java.io.OutputStream;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;

class StudentMarshaller extends MWDefaultMarshalingRules {
 @Override
 public List<Class> getStructTypes() {
 List structType = new ArrayList();
 structType.add(Student.class);
 return structType;
 }
}

 Struct Support for RESTful Requests Using Protocol Buffers in the Java Client

2-43

public class SortStudentsSyncREST {
 final static protected String CONTENT_TYPE = "application/x-google-protobuf";

 public static void main(String[] args) {

 //Creating a Student Array
 Student[] students = new Student[]{new Student("Toni Miller", 90, "A"),
 new Student("Ed Plum", 80, "B+"),
 new Student("Mark Jones", 85, "A-")};

 // Use the java.net package's URLConnection as HTTP Client in this example
 try {
 String mpsBaseUrl = "http://localhost:9910";
 URL url;
 url = new URL(mpsBaseUrl + "/sortstudents/sortstudents");
 HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setDoOutput(true);
 //Content-Type needs to be set to protobuf
 urlConnection.setRequestProperty("Content-Type", CONTENT_TYPE);

 // This class makes the initial POST request body.
 MATLABParams mlMakeBody = MATLABParams.newInstance(1, Student[].class, new StudentMarshaller(), new Object[]{students});

 // Write the MATLABParams object into the output stream of the HTTP request.
 OutputStream output = urlConnection.getOutputStream();
 output.write(mlMakeBody.getRequestBody());
 output.flush();

 // Parse the response body of the above HTTP request with the help of MATLABResult. The newInstance method
 // here also takes MATLABParams object that was initially created.
 // If there is any error in MATLAB, call to getResult() will throw MATLABException which contains the error message
 // displayed in MATLAB.
 MATLABResult mlFinalResult = MATLABResult.newInstance(mlMakeBody, urlConnection.getInputStream());
 Student[] magicSq = (Student[]) mlFinalResult.getResult();
 for (Student student :
 magicSq) {
 System.out.println(student);
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 }
}

Student.java

class Student {
 String name;
 int score;
 String grade;

 public Student() {
 }

2 Java Client Programming

2-44

 public Student(String name, int score, String grade) {
 this.name = name;
 this.score = score;
 this.grade = grade;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getScore() {
 return score;
 }

 public void setScore(int score) {
 this.score = score;
 }

 public String getGrade() {
 return grade;
 }

 public void setGrade(String grade) {
 this.grade = grade;
 }

 @Override
 public String toString() {
 return "Student{" +
 "name='" + name + '\'' +
 ", score=" + score +
 ", grade='" + grade + '\'' +
 '}';
 }
}

See Also

More About
• “Asynchronous RESTful Requests Using Protocol Buffers in the Java Client” on page 2-31
• “Synchronous RESTful Requests Using Protocol Buffers in the Java Client” on page 2-37
• “Create a Java Client Using the MWHttpClient Class” on page 1-3
• “Create a Java MATLAB Production Server Client Using the MWHttpClient Class” on page 1-2

 Struct Support for RESTful Requests Using Protocol Buffers in the Java Client

2-45

Security

• “Execute MATLAB Functions Using HTTPS” on page 3-2
• “Customize Security Configuration” on page 3-8

3

Execute MATLAB Functions Using HTTPS
Connecting to a MATLAB Production Server instance over HTTPS provides a secure channel for
executing MATLAB functions. To establish an HTTPS connection with a MATLAB Production Server
instance using a Java client:

1 Ensure that the server instance is configured to use HTTPS. For more information, see “Enable
HTTPS”.

2 Configure the client environment for using SSL.
3 Create the program proxy using the HTTPS URL of the deployed application. For more

information about writing a client program using the MATLAB Production Server Java client
library, see “Create a Java Client Using the MWHttpClient Class” on page 1-3.

The MATLAB Production Server Java client API provides hooks for the following:

• Disabling security protocols to protect against the POODLE vulnerability.
• Providing your own HostnameVerifier implementation.
• Implementing server authorization beyond that provided by HTTPS.

Configure Client Environment for SSL
Before your client application can send HTTPS requests to a server instance, the root SSL certificate
of the server must be present in the Java trust store on the client machine. If the server uses a self-
signed certificate or if the root certificate of the server signed by a certificate authority (CA) is not
present in the Java trust store, obtain the server certificate from the MATLAB Production Server
administrator or export the certificate using a browser, then import the server certificate into the
Java trust store.

Export and Save SSL Certificate

You can use any browser to save the server certificate on the client machine. The procedure to save
the certificate using Google Chrome™ follows.

1 Navigate to the server instance URL https://server FQDN:port/api/health using Google
Chrome.

2 In the Google Chrome address bar, click the padlock icon or the warning icon, depending on
whether the server instance uses a CA-signed SSL certificate or a self-signed SSL certificate.

3 Click Certificate > Details > Copy to File. This opens a wizard that lets you export the SSL
certificate. Click Next.

4 You can use the default format selection of DER encoded binary X.509 (.CER). Click Next.
5 Specify the location and file name to export the certificate, then click Next.
6 Click Finish to complete exporting the certificate.

Add Certificate to Java Trust Store

The default Java trust store is located in ${JAVA_HOME}\lib\security\cacerts. You can use the
keytool utility located in ${JDK_HOME}\bin to import the SSL certificate of the server into the
trust store on the client machine. For more information, see keytool.

Import the server certificate to the Java trust store of the client machine using the following
command:

3 Security

3-2

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

C:\tmp>keytool -importcert -file PATH_TO_SERVER_CERTIFICATE\server_cert.cer -keystore client.truststore

Doing so imports the server certificate server_cert.cer into a trust store and generates a
client.truststore file in the current working directory. You can specify client.truststore file
as the trust store when you write the client program to establish a secure proxy connection.

To use a location other than the default for the client trust store, set the trust store location and
password using Java system properties, either using Java code or when running you Java client
program the command line.

• Set Java system properties in your code:

System.setProperty("javax.net.ssl.trustStore",
 "PATH_TO_TRUSTSTORE\\client.truststore");
System.setProperty("javax.net.ssl.trustStorePassword",
 "TRUSTSTORE_PASSWORD");
MWClient client = new MWHttpClient();
URL sslURL = new URL("https://server FQDN:port/myApplication");

MyProxy sslProxy = client.createProxy(sslURL, MyProxy.class);

• Set Java system properties using the command line at run time:

C:\>java -Djavax.net.ssl.trustStore="client.truststore" -Djavax.net.ssl.trustStorePassword="TRUSTSTORE_PASSWORD" CLIENT_PROGRAM_NAME

To connect to a server that requires client-side authentication, a client certificate must also be
present in the key store of the client. For more information, see “Establish Secure Connection Using
Client Authentication” on page 3-3.

Establish Secure Proxy Connection
After your client machine is configured to use the server certificate or if the server uses a CA-signed
SSL certificate that Java trusts, you can write your client program to create a secure proxy
connection with the server using the following code:

MWClient client = new MWHttpClient();
URL sslURL = new URL("https://server FQDN:port/myApplication");
MyProxy sslProxy = client.createProxy(sslURL, MyProxy.class);

Doing so creates a secure proxy connection with the server instance running at https://server
FQDN:port to communicate with the deployed application myApplication. The connection uses the
MWHttpClient constructor and the proxy object reference sslProxy.

sslProxy checks the default Java trust store of the client machine to perform the HTTPS server
authentication. If the server requests client authentication, the HTTPS handshake fails because the
default SSLContext object created by the JRE does not provide a key store.

Establish Secure Connection Using Client Authentication
Before a .NET client can communicate with a server instance that requires client authentication, you
must create a client certificate.

Create Client Certificate

1 On the client machine, create a client certificate in JKS format in the key store.

 Execute MATLAB Functions Using HTTPS

3-3

C:\tmp>keytool -genkey -alias javaclient -keystore client.jks

The command creates a certificate client.jks with an alias javaclient.
2 In your client program, set the key store location using the file client.jks and password using

Java system properties.

System.setProperty("javax.net.ssl.keyStore", "PATH_TO_KEYSTORE\\client.jks");
System.setProperty("javax.net.ssl.keyStorePassword", "keystore_pass");
MWClient client = new MWHttpClient();
URL sslURL = new URL("https://hostname:port/myApplication");
MyProxy sslProxy = client.createProxy(sslURL, MyProxy.class);

Save Client Certificate on Server

1 Export the public client certificate client.jks in DER format using keytool, then transform it
to PEM format using openssl.

C:\tmp>keytool -export -keystore client.jks -alias javaclient -file client.cer
C:\tmp>openssl x509 -inform DER -in client.cer -outform PEM -text -out client_cert.pem

2 The MATLAB Production Server administrator must save the client certificate
client_cert.pem on the server instance and set the x509-ca-file-store in the server
configuration file main_config. For information on configuring the server for client
authentication, see “Configure Client Authentication”.

Handle Exceptions
Override Certificate Check

If the self-signed certificate or the root CA certificate of the server is not present in the Java trust
store on the client machine, and there is no mismatch between the host name of the HTTPS URL for
MATLAB function execution and the common name (CN) of the SSL certificate of the server, then
running your client program results in the following exception:

javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException:
PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException:
unable to find valid certification path to requested target

Use one of the following options to handle this exception:

• Add the SSL certificate of the server to the Java trust store on the client machine. For more
information, see “Add Certificate to Java Trust Store” on page 3-2.

• Override the certificate check and accept the untrusted certificate using the following code. The
code provides a custom implementation of the MWSSLConfig interface to use a custom
SSLContext implementation.

MWSSLConfig sslConfig = new MWSSLDefaultConfig(){
 public SSLContext getSSLContext(){
 try {
 TrustManager[] trustAllCerts = new TrustManager[] {
 new X509TrustManager() {
 public java.security.cert.X509Certificate[] getAcceptedIssuers() {
 return null;
 }

 public void checkClientTrusted(X509Certificate[] certs, String authType) { }

3 Security

3-4

 public void checkServerTrusted(X509Certificate[] certs, String authType) { }
 }
 };

 SSLContext sc = SSLContext.getInstance("SSL");
 sc.init(null, trustAllCerts, new java.security.SecureRandom());
 return sc;
 } catch(Exception ex){
 throw new RuntimeException("Error creating SSLContext : ", ex);
 }
 }
};

// Create a non-interruptible MWHttpClient instance
final MWClient client = new MWHttpClient(sslConfig);

This option is not recommended for a production environment.

Disable Host Name Verification

If there is a mismatch between the host name of the HTTPS URL for MATLAB function execution and
the CN of the SSL certificate on the server, you can override the certificate check to disable host
name verification using the following code in your client program:

class MySSLConfig extends MWSSLDefaultConfig {
 public HostnameVerifier getHostnameVerifier() {
 return new HostnameVerifier() {
 public boolean verify(String s, SSLSession sslSession) {
 return true;
 }
 };
 }
}

A MATLAB Production Server deployment on Azure® uses a self-signed SSL certificate by default.
Replacing the self-signed certificate with a CA-signed certificate is recommended. However, if you
want to use the self-signed certificate and send HTTPS requests to the server, client programs must
disable host name verification to avoid encountering an exception caused by a failure in host name
verification. The verification fails due to a mismatch between the host names in the HTTPS URL for
MATLAB function execution and the common name (CN) of the self-signed certificate. The host name
for the MATLAB execution endpoint has the value
<uniqueID>.<location>.cloudapp.azure.com, but the CN has the value azure.com. For
information about MATLAB Production Server on Azure, see “Azure Deployment for MATLAB
Production Server (BYOL)” and “Azure Deployment for MATLAB Production Server (PAYG)”.

Sample Code

Sample client program for communicating with a server using HTTPS follows.

MagicAsync.java

import java.net.URL;
import java.util.concurrent.Future;
import com.mathworks.mps.client.*;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLSession;

 Execute MATLAB Functions Using HTTPS

3-5

class MyConfig extends MWHttpClientDefaultConfig{
 public boolean isInterruptible() { return true; }
 public int getMaxConnectionsPerAddress() { return 10; }
}

class MySSLConfig extends MWSSLDefaultConfig {
 public HostnameVerifier getHostnameVerifier() {
 return new HostnameVerifier() {
 public boolean verify(String s, SSLSession sslSession) {
 return true;
 }
 };
 }
}

public class MagicAsync{
 public static void main(String[] args){
 MWClient client = new MWHttpClient(new MyConfig(), new MySSLConfig());

 try{
 MWInvokable invokable = client.createComponentProxy(new URL("https://localhost:9920/mymagic"));

 MWInvokeRequest<double[][]> httpRequest = new MWInvokeRequest("mymagic", double[][].class);
 httpRequest.setInputParams(4);
 httpRequest.setNargout(1);

 MWRequest<double[][]> request = invokable.invokeAsync(httpRequest, null);
 Future<double[][]> f = request.getFuture();

 double[][] res = f.get();
 printResult(res);
 }
 catch(Exception ex){
 System.out.println(ex);
 }
 finally{
 client.close();
 }
 }

 private static void printResult(double[][] result){
 for(double[] row : result){
 for(double element : row){
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }
}

See Also

More About
• “Customize Security Configuration” on page 3-8

3 Security

3-6

• “Enable HTTPS”
• “Create a Java Client Using the MWHttpClient Class” on page 1-3

External Websites
• keytool

 Execute MATLAB Functions Using HTTPS

3-7

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

Customize Security Configuration
The MWSSLConfig object provides information to configure HTTPS. The Java client API provides a
default MWSSLConfig implementation, MWSSLDefaultConfig, which it uses when no SSL
configuration is passed to the MWHttpClient constructor. The MWSSLDefaultConfig object is
implemented such that:

• getSSLContext() returns the default SSLContext object created by the JRE.
• getHostnameVerifier() returns a HostnameVerifier implementation that always returns

false. If the HTTPS hostname verification fails, this does not override the decision.
• getServerAuthorizer() returns a MWSSLServerAuthorizer implementation that authorizes

all MATLAB Production Server instances.

You extend the MWSSLDefaultConfig class to:

• specify the security protocols the client can use
• customize how the client verifies hostnames
• specify additional server authentication logic

The MWSSLDefaultConfig class has three methods:

• getSSLContext() — Returns the SSLContext object
• getHostnameVerifier() — Returns a HostnameVerifier object to use if HTTPS hostname
verification fails

• getServerAuthorizer() — Returns a MWSSLServerAuthorizer object to perform server
authorization based on the server certificate

Specify Enabled Encryption Protocols
MATLAB Production Server supports the following encryption protocols:

• TLSv1.0
• TLSv1.1
• TLSv1.2

By default, all protocols are enabled. If you want to control which protocols are enabled, you override
the getSSLContext() method to return an instance of MWCustomSSLContext with a list of enabled
protocols. Protocols not on the list are not enabled. For example, to avoid the POODLE vulnerability
by disabling SSL protocols, you enable the TLS protocols.

import javax.net.ssl.SSLContext;
import java.security.KeyManagementException;
import java.security.NoSuchAlgorithmException;
import com.mathworks.mps.client.*;

public class MySSLConfig extends MWSSLDefaultConfig
{
 public SSLContext getSSLContext()
 {
 try
 {
 final SSLContext context = MWCustomSSLContext.getInstance("TLSv1", "TLSv1.1", "TLSv1.2");

3 Security

3-8

 context.init(null,null,null);
 return context;
 }
 catch (NoSuchAlgorithmException e)
 {
 return null;
 }
 catch (KeyManagementException e)
 {
 return null;
 }
 }
}

Override Default Hostname Verification
As part of the SSL handshake, the HTTPS layer attempts to match the hostname in the provided URL
to the hostname provided in the server certificate. If the two hostnames do not match, the HTTPS
layer calls the HostnameVerifier.verify() method as an additional check. The return value of
the HostnameVerifier.verify() method determines if the hostname is verified.

The implementation of the HostnameVerifier.verify() method provided by the
MWSSLDefaultConfig object always returns false. The result is that if the hostname in the URL
and the hostname in the server certificate do not match, the HTTPS handshake fails.

For a more robust hostname verification scheme, extend the MWSSLDefaultConfig class to return
an implementation of HostnameVerifier.verify() that uses custom logic. For example, if you
only wanted to generate one certificate for all of the servers on which MATLAB Production Server
instances run, you could specify MPS for the certificate’s hostname. Then your implementation of
HostnameVerifier.verify() returns true if the hostname stored in the certificate is MPS.

import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLSession;
import com.mathworks.mps.client.*;

public class MySSLConfig extends MWSSLDefaultConfig
{
 public HostnameVerifier getHostnameVerifier()
 {
 return new HostNameVerifier()
 {
 public boolean verify(String s, SSLSession sslSession)
 {
 if (sslSession.getPeerHost().equals("MPS"))
 return true;
 else
 return false;
 }
 }
 }
}

For more information on HostnameVerify see Oracle's Java Documentation.

For information on disabling host name verification, see “Disable Host Name Verification” on page 3-
5.

 Customize Security Configuration

3-9

https://docs.oracle.com/javase/6/docs/api/javax/net/ssl/HostnameVerifier.html

Use Additional Server Authentication
After the HTTPS layer establishes a secure connection, a client can perform an additional
authentication step before sending requests to a server. An implementation of the
MWSSLServerAuthorizer interface performs this additional authentication. An
MWSSLSServerAuthorizer implementation performs two checks to authorize a server:

• isCertificateRequired() determines if servers must present a certificate for authorization. If
this returns true and the server has not provided a certificate, the client does not authorize the
server.

• authorize(Certificate serverCert) uses the server's certificate to determine if the client
authorizes the server to process requests.

The MWSSLSServerAuthorizer implementation returned by the MWSSLDefaultConfig object
authorizes all servers without performing any checks.

To use server authentication, extend the MWSSLDefaultConfig class and override the
implementation of getServerAuthorizer() to return a MWSSLSServerAuthorizer
implementation that does perform authorization checks.

See Also

More About
• “Execute MATLAB Functions Using HTTPS” on page 3-2

3 Security

3-10

Data Conversion Rules

A

Conversion of Java Types to MATLAB Types
Value Passed to Java Method is: Input type Received by MATLAB

is:
Dimension of Data in MATLAB is:

java.lang.Byte, byte int8 {1,1}
byte[] data {1, data.length}
java.lang.Shortshort int16 {1,1}
short[] data {1, data.length}
java.lang.Integer, int int32 {1,1}
int[] data {1, data.length}
java.lang.Long, long int64 {1,1}
long[] data {1, data.length}
java.lang.Float,float single {1,1}
float[] data {1, data.length}
java.lang.Double, double double {1,1}
double[] data {1, data.length}
java.lang.Boolean, boolean logical {1,1}
boolean[] data {1, data.length}
java.lang.Character, char char {1,1}
char[] data {1, data.length}
java.lang.String data {1, data.length()}
java.lang.String[] data cell {1, data.length}
java.lang.Object[] data {1, data.length}
T[] data MATLAB type for T { data.length,

dimensions(T[0]) }, if T is an array
{ 1, data.length}, if T is not an
array

A Conversion of Java Types to MATLAB Types

A-2

Conversion of MATLAB Types to Java Types
When MATLAB Returns: Dimension of Data in MATLAB is: MATLAB Data Converts To Java

Type:
int8, uint8 {1,1} byte,java.lang.Byte

{1,n} , {n,1} byte[n], java.lang.Byte[n]
{m,n,p,...} byte[m][n][p]... ,

java.lang.Byte[m][n][p]...
int16, uint16 {1,1} short, java.lang.Short

{1,n} , {n,1} short[n], java.lang.Short[n]
{m,n,p,...} short[m][n][p]... ,

java.lang.Short[m][n][p]...
int32, uint32 {1,1} int, java.lang.Integer

{1,n} , {n,1} int[n], java.lang.Integer[n]
{m,n,p,...} int[m][n][p]... ,

java.lang.Integer[m][n][p]...
int64, uint64 {1,1} long, java.lang.Long

{1,n} , {n,1} long[n], java.lang.Long[n]
{m,n,p,...} long[m][n][p]... ,

java.lang.Long[m][n][p]...
single {1,1} float, java.lang.Float

{1,n} , {n,1} float[n], java.lang.Float[n]
{m,n,p,...} float[m][n][p]... ,

java.lang.Float[m][n][p]...
double {1,1} double, java.lang.Double

{1,n} , {n,1} double[n], java.lang.Double[n]
{m,n,p,...} double[m][n][p]... ,

java.lang.Double[m][n][p]...
logical {1,1} boolean, java.lang.Boolean

{1,n} , {n,1} boolean[n],
java.lang.Boolean[n]

{m,n,p,...} boolean[m][n][p]... ,
java.lang.Boolean[m][n][p]...

char {1,1} char, java.lang.Character
{1,n} , {n,1} java.lang.String
{m,n,p,...} char[m][n][p]... ,

java.lang.Character[m][n][p]...
cell (containing only strings) {1,1} java.lang.String

{1,n} , {n,1} java.lang.String[n]
{m,n,p,...} java.lang.String[m][n][p]...

 Conversion of MATLAB Types to Java Types

A-3

When MATLAB Returns: Dimension of Data in MATLAB is: MATLAB Data Converts To Java
Type:

cell (containing multiple types) {1,1} java.lang.Object
{1,n} , {n,1} java.lang.Object[n]
{m,n,p,...} java.lang.Object[m][n][p]...

A Conversion of MATLAB Types to Java Types

A-4

	Client Programming
	Create a Java MATLAB Production Server Client Using the MWHttpClient Class
	Create a Java Client Using the MWHttpClient Class
	Unsupported MATLAB Data Types for Client and Server Marshaling
	Supported Data Types
	Unsupported Data Types

	Java Client Programming
	Java Client Coding Best Practices
	Static Proxy Interface Guidelines
	Java Client Prerequisites
	Manage Client Lifecycle
	Handling Java Client Exceptions
	Managing System Resources
	Where to Find the Javadoc

	Configure Client-Server Connection
	Default Configuration
	Implement Custom Connection Configurations

	Invoke MATLAB Functions Dynamically
	Create a Proxy for Dynamic Invocation
	Invoke a MATLAB Function Dynamically
	Marshal MATLAB Structures

	Bond Pricing Tool for Java Client
	Objectives
	Step 1: Write MATLAB Code
	Step 2: Create a Deployable Archive with the Production Server Compiler App
	Step 3: Share the Deployable Archive on a Server
	Step 4: Create the Java Client Code
	Step 5: Build the Client Code and Run the Example

	Code Multiple Outputs for Java Client
	Code Variable-Length Inputs and Outputs for Java Client
	Marshal MATLAB Structures (Structs) in Java
	Marshaling a Struct Between Client and Server

	Data Conversion with Java and MATLAB Types
	Working with MATLAB Data Types
	Scalar Numeric Type Coercion
	Dimensionality in Java and MATLAB Data Types
	Empty (Zero) Dimensions
	Boxed Types
	Signed and Unsigned Types in Java and MATLAB Data Types

	Java Client Logging
	Use the Embedded log4j Engine
	Use an Existing Logging Engine

	Asynchronous RESTful Requests Using Protocol Buffers in the Java Client
	Deploy your MATLAB Function on the Server
	Make an Asynchronous Request to the Server
	Get the State Information of the Request
	View the Collection of Requests Owned by a Particular Client
	Retrieve the Results of a Request

	Synchronous RESTful Requests Using Protocol Buffers in the Java Client
	Deploy your MATLAB Function on the Server
	Make a Synchronous Request to the Server
	Receive and Interpret the Server Response

	Struct Support for RESTful Requests Using Protocol Buffers in the Java Client
	Deploy your MATLAB function on the server
	Create helper classes
	Make a synchronous request to the server
	Receive and interpret the server response

	Security
	Execute MATLAB Functions Using HTTPS
	Configure Client Environment for SSL
	Establish Secure Proxy Connection
	Establish Secure Connection Using Client Authentication
	Handle Exceptions

	Customize Security Configuration
	Specify Enabled Encryption Protocols
	Override Default Hostname Verification
	Use Additional Server Authentication

	Data Conversion Rules
	Conversion of Java Types to MATLAB Types
	Conversion of MATLAB Types to Java Types

